(openPR) Spintronische Bauelemente basieren nicht auf bewegten Ladungen, sondern darauf, dass magnetische Momente, in der Regel Elektronenspins, ihre Ausrichtung verändern können. Spintronische Bauelemente können daher extrem schnell arbeiten, aktuell in Zeitskalen von hundert Pikosekunden (eine Pikosekunde ist 10-12 s). Die mikroskopischen Prozesse selbst laufen jedoch noch viel schneller ab, im Bereich von wenigen hundert Femtosekunden (1 fs = 10-15 s).
Nun ist es einem internationalen Team um Prof. Christine Boeglin von der Universität Straßburg erstmals gelungen, einige dieser dynamischen Prozesse in einem magnetischen Schichtsystem experimentell zu beobachten. Sie untersuchten ein sogenanntes Spinventil, das aus alternierenden Platin-Kobalt-Schichten (Pt/Co) und einer Eisen-Gadolinium-Legierung besteht. In diesem System sind die Wechselwirkungen zwischen angeregten (heißen) Elektronen und den magnetischen Schichten besonders stark. Erstautorin Deeksha Gupta führte die Experimente an der Femtoslicing-Station von BESSY II zusammen mit dem HZB-Team durch, das diese weltweit einzigartige Infrastruktur betreibt.
Ein Femtosekunden-Infrarotlaser erzeugt zunächst heiße Elektronen (HE) in einer Platin-Deckschicht. Eine 60 Nanometer dicke Kupferschicht blockiert die Photonen und sorgt dafür, dass nur heißen Elektronen die Co/Pt-Schicht an der Vorderseite des Spinventils erreichen. Sie fungiert als Spinpolarisator und produziert spinpolarisierte HE-Impulse (SPHE). Diese SPHE-Impulse konnte das Team nun charakterisieren. Dafür analysierte es die Entmagnetisierungsdynamik innerhalb der ferrimagnetischen Fe74Gd26-Schicht am Ende des Spinventils.
Dies war so tatsächlich nur an BESSY II möglich: „Nur an der Femtoslicing-Beamline an BESSY II können wir die ultraschnelle Spindynamik für jede Komponente eines komplexen Proben-Systems separat untersuchen“, sagt HZB-Wissenschaftler Christian Schüßler-Langeheine. Das Team verwendete ultrakurze (~100 fs) weiche Röntgenimpulse, die auf die Resonanzen von Eisen- und Gadolinium-Atomen abgestimmt waren, und zeichnete deren jeweilige dynamische Reaktionen auf SPHE-Impulse auf.
Mit Hilfe von theoretischen Modellen, die an der Universität Uppsala entwickelt wurden, konnten sie die entscheidenden Parameter der SPHE-Stromimpulse bestimmen, insbesondere die Impulsdauer, die Spinpolarisationsrichtung und die Stromdichten, die zur Reproduktion der experimentellen Ergebnisse erforderlich sind.
Deeksha Gupta, die die Experimente im Rahmen ihrer Doktorarbeit durchgeführt hat, ist inzwischen Postdoktorandin am HZB und forscht weiterhin an magnetischen Materialien: „Dies ist ein Gebiet, das sich rasch entwickelt. Zum ersten Mal konnten wir wirklich Aufschluss über das Verhalten von Spinströmen in komplexen magnetischen Materialien gewinnen. Dies könnte den Weg für technologische Entwicklungen ebnen.“
wissenschaftliche Ansprechpartner: Dr. Deeksha Gupta, Dr. Christian Schüßler-Langeheine;
Originalpublikation: Nature Communications (2025): Tuning ultrafast demagnetization with ultrashort spin polarized currents in multi-sublattice ferrimagnets
Gupta D, Pankratova M, Riepp M, Pereiro M, Sanyal B, Ershadrad S, Hehn M, Pontius N, Schüßler-Langeheine C, Abrudan R, Bergeard N, Bergman A, Eriksson O und Boeglin C.
Disclaimer: Für den obigen Pressetext inkl. etwaiger Bilder/ Videos ist ausschließlich der im Text angegebene Kontakt verantwortlich. Der Webseitenanbieter distanziert sich ausdrücklich von den Inhalten Dritter und macht sich diese nicht zu eigen. Wenn Sie die obigen Informationen redaktionell nutzen möchten, so wenden Sie sich bitte an den obigen Pressekontakt. Bei einer Veröffentlichung bitten wir um ein Belegexemplar oder Quellenennung der URL.