RuhrCampusOnline.de - Das studentische Magazin von Rhein und Ruhr
Keine Suchergebnisse
Alle Suchergebnisse einsehen
Gartenfreunde
  • Bochum
  • Bonn
  • Dortmund
  • Duisburg
  • Düsseldorf
  • Essen
  • Gelsenkirchen
  • Köln
  • Krefeld
  • Wuppertal
  • Bochum
  • Bonn
  • Dortmund
  • Duisburg
  • Düsseldorf
  • Essen
  • Gelsenkirchen
  • Köln
  • Krefeld
  • Wuppertal
Keine Suchergebnisse
Alle Suchergebnisse einsehen
Justnow Press
Keine Suchergebnisse
Alle Suchergebnisse einsehen

Startseite » Krefeld » Ein neuer Zustand zwischen Metall und Isolator

Ein neuer Zustand zwischen Metall und Isolator

20. Januar 2025
in Krefeld
Reading Time: 3Minuten Lesezeit
Ein neuer Zustand zwischen Metall und Isolator
Share on FacebookShare on Twitter

(openPR) Es ist ein Grundprinzip der Quantentheorie: Manchmal können bestimmte physikalische Größen nur ganz bestimmte Werte annehmen, der Bereich dazwischen ist physikalisch einfach nicht erlaubt. Diese Tatsache spielt eine entscheidende Rolle für das Verhalten von Materialien. Für die Elektronen des Materials sind bestimmte Energiebereiche möglich, andere hingegen nicht. Dadurch lässt sich unter anderem der Unterschied zwischen elektrisch leitenden Metallen und nichtleitenden Isolatoren erklären.

Manchmal können aber überraschende Verbindungen zwischen erlaubten Bereichen entstehen, durch die Elektronen von einem Bereich in den anderen überwechseln können. Einen solchen ungewöhnlichen Übergangsbereich entdeckte man 2007 in bestimmten kupferhaltigen Materialien, den sogenannten Cupraten. An der TU Wien konnte man nun zeigen: Das sind keine exotischen Spezialfälle, dieser Effekt muss sogar zwingend auftreten, wenn die Wechselwirkung zwischen den Elektronen groß genug ist. Das bedeutet: Es gibt einen zusätzlichen Zustand zwischen Metall und Isolator.

„Ein Elektron, das sich im Atom um den Atomkern bewegt, kann nur ganz bestimmte Energiewerte annehmen. Alles dazwischen ist verboten, es kann höchstens von einem erlaubten Energiewert zu einem anderen erlaubten Energiewert wechseln, das bezeichnet man dann als Quantensprung“, sagt Prof. Karsten Held vom Institut für Festkörperphysik der TU Wien. „Bei den Elektronen im Festkörper ist es etwas komplizierter, da sind nicht bloß bestimmte Energiewerte erlaubt, sondern ganze Energiebereiche – man spricht von Energiebändern.“

Sowohl die Energie als auch der Impuls (beziehungsweise die Geschwindigkeit) der Elektronen spielt hier eine Rolle: Das Elektron kann unterschiedlich hohe Impuls-Werte annehmen, dadurch variiert auch seine Energie – aber eben nur innerhalb eines bestimmten Bereichs. Um von einem erlaubten Energiebereich in den nächsthöheren gelangen, ist eine kräftigere Portion Zusatz-Energie nötig.

Bei Isolatoren sind diese erlaubten Energiebänder durch einen breiten „verbotenen“ Bereich voneinander getrennt. Somit gelingt es den Elektronen nicht, von einem Band mit geringer Energie, bei dem jedes Elektron an seinen Atomkern gebunden bleibt, zu einem Band mit höherer Energie zu wechseln, in dem es sich von Atom zu Atom durch das Material bewegen könnte. Alle Elektronen bleiben an ihrem Platz, elektrischer Strom kann nicht fließen. In einem elektrisch leitenden Material hingegen gibt es keinen solchen „verbotenen Bereich“, die Elektronen können sich leicht bewegen.

„Wie diese erlaubten und verbotenen Energiebänder angeordnet sind, hängt vom Material ab, vor allem davon, wie stark die Elektronen in diesem Material wechselwirken“, sagt Karsten Held. Diese Stärke der Elektronen-Wechselwirkung kann man anpassen, indem man gezielt eine bestimmte Anzahl von Fremdatomen in das Material einbaut. Man spricht dann von einem „dotierten“ Material, diese Technik wird in der Halbleiter-Herstellung routinemäßig eingesetzt.

Ein neues Energieband wird geboren – und bleibt durch eine „Nabelschnur“ verbunden

Wenn man diese Wechselwirkungs-Stärke kontinuierlich ändert, dann kann es passieren, dass aus einem erlaubten Energie-Bereich zwei getrennte erlaubte Energie-Bereiche werden. „In diesem Fall ist es besonders interessant, welche Struktur sich hier ergibt und welche möglichen Kombinationen von Energie und Impuls sich ergeben“, sagt Karsten Held.

„Wir fanden heraus, dass beim Prozess der Trennung in zwei erlaubte Energiebänder diese beiden Bänder zunächst noch miteinander verbunden bleiben, durch eine Art Quanten-Nabelschnur“, so Karsten Held. Bei den meisten Impuls-Werten muss sich das Elektron entscheiden: Es kann sich nur entweder im oberen oder im unteren Energieband befinden. Aber es gibt einen Impuls-Wert, bei dem ein breiter Bereich von Energie-Werten möglich ist – er verbindet beide Bänder. Solche Anomalien, mit einem Impuls-Wert aber vielen Energie-Werten wurden bereits früher in Experimenten gefunden, die Ursache blieb aber zunächst unklar.

Juraj Krsnik und Karsten Held von der TU Wien gelang es nun zu zeigen, dass dieses Phänomen kein exotischer Einzelfall ist, sondern dass es zwingendermaßen zu diesem „Nabelschnur-Effekt“ kommen muss, wenn die Wechselwirkungsstärke zwischen den Elektronen in einem bestimmten Bereich fällt. Das bedeutet, dass man bei der Kategorisierung von Festkörpern nun eine weitere Zustands-Klasse berücksichtigen muss. Das ist nicht neu in der Festkörperphysik – so wurde etwa 2016 der Physik-Nobelpreis für sogenannte „topologische Zustände“ in Supraleitern vergeben, die ebenfalls durch einen ganz bestimmten Zusammenhang zwischen Energie- und Impuls-Werten definiert sind.

Trotzdem kommt das Ergebnis durchaus überraschend: „Wir konnten ganz klar zeigen, dass diese Nabelschnur-artige Verbindung ganz natürlicherweise auftreten muss, wenn sich ein Energieband von einem anderen abspaltet“, sagt Karsten Held. „Das eröffnet einen ganz neuen Blick auf technologisch hochinteressante Materialklassen, und zeigt uns: Zwischen elektrischen Leitern und Isolatoren gibt es doch noch mehr an Materialwissenschaft, als man bisher dachte.“

wissenschaftliche Ansprechpartner: Prof. Karsten Held Institut für Festkörperphysik Technische Universität Wien Wiedner Hauptstraße 8-10, 1040 Wien +43-1-58801-13710

Originalpublikation: Juraj Krsnik, Karsten Held: Local correlations necessitate waterfalls as a connection between quasiparticle band and developing Hubbard bands, Nature Communications volume 16, 255.

Vorherige News

Erfolgreicher Abschluss des Clusters Harmon-E

Nächste News

Jochen Block-Preis 2025 für Dr. Thomas Seidensticker, Technische Universität Dortmund

Ähnliche Beiträge

"Magdeburg hat noch richtig Potenzial"
Krefeld

Magdeburg hat noch richtig Potenzial

13. Juni 2025
Frauen in Wissenschaft, Forschung und Wirtschaft voranbringen – Männer mit eingeschlossen
Krefeld

Frauen in Wissenschaft, Forschung und Wirtschaft voranbringen – Männer mit eingeschlossen

12. Juni 2025
Doch gibt es einige Hürden, wie eine Umfrage zeigt
Krefeld

Doch gibt es einige Hürden, wie eine Umfrage zeigt

10. Juni 2025
Das Trampolin für Phononen
Krefeld

Das Trampolin für Phononen

5. Juni 2025

Beliebte News

  • (v.l.) Chr. Mohr (RC BO-Hellweg), Dzenana Hukic, Kim Stratmann und H. Adamsen (RC BO-Hellweg)

    Rotary Club Bochum-Hellweg engagiert sich fürs Deutschlandstipendium

    0 shares
    Share 0 Tweet 0
  • Rotary Club Bochum-Hellweg verleiht RUB-Universitätspreis für herausragende Abschlussarbeit an Nele Borgert

    0 shares
    Share 0 Tweet 0
  • Desk-Sharing Plattform aus Bonn erobert Deutschlands Coworking-Markt

    0 shares
    Share 0 Tweet 0
  • RFH Köln informiert über Bachelor Wirtschaftsinformatik

    0 shares
    Share 0 Tweet 0
  • Berufsausbildung Sprachen statt Studium in Zeiten von Corona? Infoabend 4.8. in der Dolmetscherschule Köln

    0 shares
    Share 0 Tweet 0
  • Impressum
  • Datenschutz
  • Kontakt
© 2020 RuhrCampusOnline.de
Keine Suchergebnisse
Alle Suchergebnisse einsehen
  • Bochum
  • Bonn
  • Dortmund
  • Duisburg
  • Düsseldorf
  • Essen
  • Gelsenkirchen
  • Köln
  • Krefeld
  • Wuppertal

Cookie-Zustimmung verwalten
Wir verwenden Cookies, um unsere Website und unseren Service zu optimieren.
Funktional Immer aktiv
Die technische Speicherung oder der Zugang ist unbedingt erforderlich für den rechtmäßigen Zweck, die Nutzung eines bestimmten Dienstes zu ermöglichen, der vom Teilnehmer oder Nutzer ausdrücklich gewünscht wird, oder für den alleinigen Zweck, die Übertragung einer Nachricht über ein elektronisches Kommunikationsnetz durchzuführen.
Vorlieben
Die technische Speicherung oder der Zugriff ist für den rechtmäßigen Zweck der Speicherung von Präferenzen erforderlich, die nicht vom Abonnenten oder Benutzer angefordert wurden.
Statistiken
Die technische Speicherung oder der Zugriff, der ausschließlich zu statistischen Zwecken erfolgt. Die technische Speicherung oder der Zugriff, der ausschließlich zu anonymen statistischen Zwecken verwendet wird. Ohne eine Vorladung, die freiwillige Zustimmung deines Internetdienstanbieters oder zusätzliche Aufzeichnungen von Dritten können die zu diesem Zweck gespeicherten oder abgerufenen Informationen allein in der Regel nicht dazu verwendet werden, dich zu identifizieren.
Marketing
Die technische Speicherung oder der Zugriff ist erforderlich, um Nutzerprofile zu erstellen, um Werbung zu versenden oder um den Nutzer auf einer Website oder über mehrere Websites hinweg zu ähnlichen Marketingzwecken zu verfolgen.
Optionen verwalten Dienste verwalten Verwalten von {vendor_count}-Lieferanten Lese mehr über diese Zwecke
Einstellungen anzeigen
{title} {title} {title}