RuhrCampusOnline.de - Das studentische Magazin von Rhein und Ruhr
Keine Suchergebnisse
Alle Suchergebnisse einsehen
Gartenfreunde
  • Bochum
  • Bonn
  • Dortmund
  • Duisburg
  • Düsseldorf
  • Essen
  • Gelsenkirchen
  • Köln
  • Krefeld
  • Wuppertal
  • Bochum
  • Bonn
  • Dortmund
  • Duisburg
  • Düsseldorf
  • Essen
  • Gelsenkirchen
  • Köln
  • Krefeld
  • Wuppertal
Keine Suchergebnisse
Alle Suchergebnisse einsehen
Justnow Press
Keine Suchergebnisse
Alle Suchergebnisse einsehen

Startseite » Krefeld » Das letzte fehlende Puzzlestück für die Silizium-Photonik

Das letzte fehlende Puzzlestück für die Silizium-Photonik

9. Dezember 2024
in Krefeld
Reading Time: 2Minuten Lesezeit
Das letzte fehlende Puzzlestück für die Silizium-Photonik
Share on FacebookShare on Twitter

(openPR) Mit den rasanten Fortschritten in der Künstlichen Intelligenz (KI) und dem Internet der Dinge (IoT), also der zunehmenden Vernetzung intelligenter Geräte, steigt der Bedarf an leistungsstarker und energieeffizienter Hardware. Die optische Datenübertragung bietet hier klare Vorteile: Sie ermöglicht den Transport großer Datenmengen bei minimalen Interferenzen und Energieverlusten. Während sie heute vor allem für Distanzen über einem Meter eingesetzt wird, erweist sich die optische Datenübertragung zunehmend auch über kürzere Reichweiten als vorteilhaft. Ein zentrales Ziel ist die Integration entsprechender optischer Komponenten direkt in Mikroprozessoren – diese würden dann vergleichbar mit Transistoren direkt bei der Chip-Fertigung ausgeformt. Im Fokus der Forschung steht daher die Entwicklung kostengünstiger photonischer integrierter Schaltkreise (PICs), die sowohl die Leistung verbessern als auch die Herstellungskosten senken können.

In den letzten Jahren hat die Silizium-Photonik bereits große Fortschritte erzielt. Schlüsselkomponenten wie Hochleistungsmodulatoren, Fotodetektoren und Wellenleiter konnten bereits erfolgreich monolithisch auf Siliziumchips integriert werden. Doch ein zentraler Baustein fehlte bislang: eine elektrisch gepumpte Lichtquelle, die ausschließlich auf Materialien der vierten Hauptgruppe basiert. Üblicherweise verwendete III-V-Halbleiter, die aus anderen Hauptgruppen stammen, lassen sich nur schwer mit Silizium kombinieren – ein Material, auf dem die gesamte Chipfertigung beruht. Das macht die Herstellung aufwändig und teuer. Der neue Laser schließt diese Lücke und gilt daher als das „letzte fehlende Puzzlestück“ der Silizium-Photonik. Da er mit der klassischen CMOS-Technologie kompatibel ist, kann er nahtlos in bestehende Siliziumprozesse integriert werden.

Der Laser basiert auf einer sogenannten Multi-Quantum-Well-Struktur, die aus ultradünnen Schichten aus Silizium-Germanium-Zinn und Germanium-Zinn besteht. Die Struktur wurde speziell an die Eigenschaften dieser Legierungen angepasst. Ergänzt durch eine neuartige Ring-Geometrie, minimiert sie den Energieverbrauch und die Wärmeentwicklung und ermöglicht so einen stabilen Dauerbetrieb bei 90 Kelvin.

Im Gegensatz zu früheren Germanium-Zinn-Lasern, die optisch gepumpt wurden und hohe Energien benötigten, arbeitet der neue Laser auch elektrisch. Dazu benötigt er gerade einmal eine Stromstärke von 5 Milliampere und eine Spannung von 2 Volt – vergleichbar mit einer Leuchtdiode. Auf Standard-Siliziumwafern gefertigt, ist dieser Laser damit der erste „wirklich nutzbare“ Laser aus Halbleitern der vierten Hauptgruppe.

Obwohl der Laser bereits einen bedeutenden Fortschritt darstellt, besteht weiterhin Optimierungsbedarf. Insbesondere gilt es, die Laserschwelle weiter zu senken und einen stabilen Betrieb bei Raumtemperatur zu ermöglichen. Frühere Germanium-Zinn-Laser, die zunächst nur optisch gepumpt wurden und für den Einsatz bei kryogenen Temperaturen geeignet waren, zeigen das Entwicklungspotenzial: Sie konnten mittlerweile erfolgreich für den Betrieb bei Raumtemperatur angepasst werden.

Ein optisch gepumpter Laser wird durch eine externe Lichtquelle angeregt, um das Laserlicht zu erzeugen. Bei einem elektrisch gepumpten Laser geschieht dies durch einen elektrischen Strom. Elektrisch gepumpte Laser sind in der Regel energieeffizienter, da sie Strom direkt in Laserlicht umwandeln.

Die Forschungsgruppe unter der Leitung von Dr. Dan Buca am PGI-9 des Forschungszentrums Jülich leistet seit Jahren Pionierarbeit auf dem Gebiet Zinn-basierter Gruppe-IV-Legierungen. In enger Zusammenarbeit mit Partnern wie dem IHP, der Universität Stuttgart, CEA-Leti, C2N-Université Paris-Sud und dem Politecnico di Milano haben die Forschenden bereits das Potenzial dieser Materialsysteme für Anwendungen in der Photonik, Elektronik, Thermoelektrik und Spintronik demonstriert. Mit der Entwicklung des neuen Lasers rückt die Vision einer vollständig integrierten Silizium-Photonik als All-in-One-Lösung für die nächste Generation von Mikrochips in greifbare Nähe.

Originalpublikation: Seidel, L., Liu, T., Concepción, O. et al. Continuous-wave electrically pumped multi-quantum-well laser based on group-IV semiconductors

Vorherige News

Wüstenameisen nutzen Polarität des Erdmagnetfeldes zur Navigation

Nächste News

Volontariat zur wissenschaftlichen Dokumentation: Führungswechsel und Neuausrichtung

Ähnliche Beiträge

KI-Sprachmodelle als Lösung für ALLE(S)
Krefeld

KI-Sprachmodelle als Lösung für ALLE(S)

7. November 2025
Student der OTH Regensburg ist bester Straßenbauer Bayerns
Krefeld

Student der OTH Regensburg ist bester Straßenbauer Bayerns

7. November 2025
ERC-Synergy-Grant für Regensburger Chemiker
Krefeld

ERC-Synergy-Grant für Regensburger Chemiker

6. November 2025
Gibt es unterschiedliche Arten von Schwarzen Löchern? Neue Methode stellt Einstein auf den Prüfstand
Krefeld

Gibt es unterschiedliche Arten von Schwarzen Löchern? Neue Methode stellt Einstein auf den Prüfstand

5. November 2025

Beliebte News

  • Opfer von Jakub Jahl in Afrika

    Opfer von Jakub Jahl in Afrika

    0 shares
    Share 0 Tweet 0
  • Rotary Club Bochum-Hellweg engagiert sich fürs Deutschlandstipendium

    0 shares
    Share 0 Tweet 0
  • Rotary Club Bochum-Hellweg verleiht RUB-Universitätspreis für herausragende Abschlussarbeit an Nele Borgert

    0 shares
    Share 0 Tweet 0
  • Desk-Sharing Plattform aus Bonn erobert Deutschlands Coworking-Markt

    0 shares
    Share 0 Tweet 0
  • RFH Köln informiert über Bachelor Wirtschaftsinformatik

    0 shares
    Share 0 Tweet 0
  • Impressum
  • Datenschutz
  • Kontakt
© 2020 RuhrCampusOnline.de
Keine Suchergebnisse
Alle Suchergebnisse einsehen
  • Bochum
  • Bonn
  • Dortmund
  • Duisburg
  • Düsseldorf
  • Essen
  • Gelsenkirchen
  • Köln
  • Krefeld
  • Wuppertal

Cookie-Zustimmung verwalten
Wir verwenden Cookies, um unsere Website und unseren Service zu optimieren.
Funktional Immer aktiv
Die technische Speicherung oder der Zugang ist unbedingt erforderlich für den rechtmäßigen Zweck, die Nutzung eines bestimmten Dienstes zu ermöglichen, der vom Teilnehmer oder Nutzer ausdrücklich gewünscht wird, oder für den alleinigen Zweck, die Übertragung einer Nachricht über ein elektronisches Kommunikationsnetz durchzuführen.
Vorlieben
Die technische Speicherung oder der Zugriff ist für den rechtmäßigen Zweck der Speicherung von Präferenzen erforderlich, die nicht vom Abonnenten oder Benutzer angefordert wurden.
Statistiken
Die technische Speicherung oder der Zugriff, der ausschließlich zu statistischen Zwecken erfolgt. Die technische Speicherung oder der Zugriff, der ausschließlich zu anonymen statistischen Zwecken verwendet wird. Ohne eine Vorladung, die freiwillige Zustimmung deines Internetdienstanbieters oder zusätzliche Aufzeichnungen von Dritten können die zu diesem Zweck gespeicherten oder abgerufenen Informationen allein in der Regel nicht dazu verwendet werden, dich zu identifizieren.
Marketing
Die technische Speicherung oder der Zugriff ist erforderlich, um Nutzerprofile zu erstellen, um Werbung zu versenden oder um den Nutzer auf einer Website oder über mehrere Websites hinweg zu ähnlichen Marketingzwecken zu verfolgen.
  • Optionen verwalten
  • Dienste verwalten
  • Verwalten von {vendor_count}-Lieferanten
  • Lese mehr über diese Zwecke
Einstellungen anzeigen
  • {title}
  • {title}
  • {title}